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Transient tissue priming via ROCK inhibition uncouples
pancreatic cancer progression, sensitivity to
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The emerging standard of care for patients with inoperable pancreatic cancer is a combination of cytotoxic
drugs gemcitabine and Abraxane, but patient response remains moderate. Pancreatic cancer development
and metastasis occur in complex settings, with reciprocal feedback from microenvironmental cues influencing
both disease progression and drug response. Little is known about how sequential dual targeting of tumor
tissue tension and vasculature before chemotherapy can affect tumor response. We used intravital imaging
to assess how transient manipulation of the tumor tissue, or “priming,” using the pharmaceutical Rho kinase
inhibitor Fasudil affects response to chemotherapy. Intravital Förster resonance energy transfer imaging of a
cyclin-dependent kinase 1 biosensor to monitor the efficacy of cytotoxic drugs revealed that priming improves
pancreatic cancer response to gemcitabine/Abraxane at both primary and secondary sites. Transient priming
also sensitized cells to shear stress and impaired colonization efficiency and fibrotic niche remodeling within
the liver, three important features of cancer spread. Last, we demonstrate a graded response to priming in
stratified patient-derived tumors, indicating that fine-tuned tissue manipulation before chemotherapy may of-
fer opportunities in both primary and metastatic targeting of pancreatic cancer.
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INTRODUCTION
A number of new therapeutics have been exploited to improve upon
gemcitabine (Gem) in pancreatic cancer (PC). Recently, the addition
of nab-paclitaxel (Abraxane) to Gem improved patient survival from
6.6 to 8.7 months (1). Although the improvements found with the an-
timitotic Abraxane are encouraging and the combination is rapidly be-
coming a first-line treatment in this aggressive disease (2), there is an
urgent need to improve upon this moderate shift in patient survival.

The actin cytoskeleton and its prototypical regulatory proteins Rho
guanosine triphosphatases (GTPases) are commonly hijacked by
many cancers to drive tumor progression (3–6). In particular, altering
cytoskeleton-based cell contractility affects not only coordinated cancer
cell protrusion during invasion but also the bidirectional interaction be-
tween stromal and cancer cells to induce tissue stiffening and drive tu-
mor survival, proliferation, and progression (7–10). Hence, targeting
tissue architecture via Rho GTPase inhibition to alter tissue stiffness,
cellular rheology, vasodilation, ormechanoplasticity is an emerging area
of potential therapeutic intervention in cancer (3, 5, 11–14).

Optimizing preclinical diseasemodels in drug discovery requires in-
novative approaches to assess drug response in live tissue at the single-
cell and molecular levels. Intravital imaging offers insights into how
cells behave in their native environment and provides a dynamic four-
dimensional (4D) molecular readout of therapeutic response, un-
detectable in vitro (15, 16). Here, we derived primary and invasive cells
from both the Pdx1-Cre, LSL-KrasG12D/+, LSL-Trp53R172H/+ (KPC)
mousemodel (17–21) and pancreatic patient-derived xenografts (PDXs)
and engineered them to express the highly validated cyclin-dependent
kinase 1 (CDK1) Förster resonance energy transfer (FRET) biosensor
(22, 23).WemonitoredCDK1 activity as a surrogatemarker ofM-phase
cell cycle arrest induced by Gem/Abraxane (22–27). Upon investigating
the ultrastructure, integrity, and stiffness of the extracellular matrix
(ECM) in complex organotypic matrices in response to transient
priming with the ROCK inhibitor Fasudil (HA-1077) (28), we mapped
PC cell response to Gem/Abraxane in live tumor tissues during disease
progression. First, this was achieved through spatiotemporalmonitoring
of the response to Gem/Abraxane at distinct sites within live primary
tumors and PDXs, whereas assessment in liver metastases revealed a
multisite improvement in response to chemotherapy after transient dual
manipulation of tissue tension and tumor vasculature with Fasudil. Sec-
ond, priming impaired tumor cell extravasation efficiency, resistance to
shear stress, and metastatic niche remodeling within the liver, reducing
spread in secondary sites. Last, we reveal a graded response to transient
priming regimens relative to ECM found in PDXs from the Australian
Pancreatic Cancer Genome Initiative (APGI) cohort (29). Collectively,
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we present preclinical evidence that tailored, fine-tuned tissue priming
before chemotherapy may offer opportunities in both primary and
metastatic targeting in PC.
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RESULTS
Priming the stroma via ROCK inhibition disrupts
ECM integrity
The effect of ROCK inhibition on ECM integrity was assessed using
fibroblast-driven contraction assays, which revealed a decrease in con-
traction upon treatment with Fasudil (Fig. 1A). Immunohistochemical
(IHC) analysis of ROCK signaling in matrices confirmed that Fasudil
inhibits the downstream targets of ROCK, pMLC2, and pMYPT1 (fig.
S1, A and B) (30), whereas 2D and 3D cell proliferation analyses in-
dicated that impairment of matrix contraction was independent of
changes in fibroblast proliferation and survival (fig. S1, C to E).

Second harmonic generation (SHG) imaging (31) and polarized
light microscopy of picrosirius red staining (32, 33) of contracted col-
lagen matrices revealed a reduction in fibrillar collagen coverage upon
ROCK inhibition compared to control (Fig. 1, B to D, and fig. S1F),
whereas collagen production was unaltered (Fig. 1, E and F). Live
monitoring of fibroblast-ECM interactions (Fig. 1G and movie S1)
(34) demonstrated uncoordinated, shorter, and unstable fibroblast pro-
trusions in Fasudil-treated conditions, as well as increased cell circular-
ity (Fig. 1H). Analysis of matrix ultrastructure using gray-level co-
occurrence matrix (GLCM) (35) and scanning electron microscopy
confirmed a disorganized ECM network in Fasudil-treated condition
(Fig. 1, I to K), and atomic force microscopy measurements revealed
a reduction in matrix stiffness for primed matrices (Fig. 1L). Similar
results were observed for matrices treated with the structurally un-
related ROCK inhibitor Y-27632 (fig. S1, G to L), confirming that
ROCK targeting disrupts matrix integrity.

1The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New
South Wales 2010, Australia. 2St. Vincent’s Clinical School, Faculty of Medicine
University of New South Wales, Sydney, New South Wales 2010, Australia. 3Devel
opmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute
Sydney, New South Wales 2010, Australia. 4Biomedical Imaging Facility, Mark
Wainwright Analytical Centre, Lowy Cancer Research Centre, University of New
South Wales, Sydney, New South Wales 2052, Australia. 5Department of Patholo
gy, St. Vincent’s Hospital, Sydney, New South Wales 2010, Australia. 6Illawarra
Health and Medical Research Institute, University of Wollongong, Wollongong
New South Wales 2522, Australia. 7Immune Imaging Program, Centenary Institute
University of Sydney, Sydney, New South Wales 2006, Australia. 8University o
Sydney Medical School, Sydney, New South Wales 2006, Australia. 9Departmen
of Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wale
2050, Australia. 10Cancer Research UK Beatson Institute, Glasgow, Scotland G61
BD, U.K. 11Cancer Diagnosis and Pathology Research Group, Kolling Institute o
Medical Research and Royal North Shore Hospital, Sydney, New South Wale
2065, Australia. 12University of Sydney, Sydney, New South Wales 2006, Australia
13Australian Pancreatic Cancer Genome Initiative 14Department of Surgery, Roya
North Shore Hospital, Sydney, New South Wales 2065, Australia. 15Macarthu
Cancer Therapy Centre, Campbelltown Hospital, Sydney, New South Wales
2560, Australia. 16School of Medicine, Western Sydney University, Penrith, Sydney
New South Wales 2751, Australia. 17School of Biotechnology and Biomolecula
Science, University of New South Wales, Sydney, New South Wales 2052, Australia
18Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University
of Glasgow, Scotland G61 BD, U.K. 19West of Scotland Pancreatic Unit, Glasgow
Royal Infirmary, Scotland G61 BD, U.K. 20Department of Bioengineering, Institute
of Engineering in Medicine, University of California, San Diego, San Diego, CA
92121, USA. 21Centre for Cancer Biology, SA Pathology and University of South
Australia School of Medicine, University of Adelaide, Adelaide, South Australia
5000, Australia.
*These authors contributed equally to this work.
†These authors contributed equally to this work.
‡Corresponding author. Email: m.pajic@garvan.org.au (M. Pajic); p.timpson@garvan
org.au (P.T.)

Vennin et al., Sci. Transl. Med. 9, eaai8504 (2017) 5 April 2017

 on A
pril 5, 2017

.org/
,
-
,

-

,
,
f
t
s

f
s
.
l
r

,
r
.

.

Recent studies assessing the effect of stromal manipulation via long-
term interference with ECM remodeling have yielded conflicting data
on the utility of stromal targeting in limiting the progression of PC
(10, 12, 36–43). We therefore sought to assess whether fine-tuned
transient interference with stromal tension affects PC progression and
drug response (10).

The scheduling of priming regimens influences PC cell
invasion and Gem/Abraxane efficacy
We examined cancer cell invasion in a 3D organotypic model using
primary PC cells established from KPC mice (17, 18, 44, 45). 3D or-
ganotypic matrices were treated with Fasudil either during contraction
(priming) or during invasion (later treatment) (Fig. 2A). KPC cell inva-
sion was decreased in matrices primed with Fasudil compared to control
(Fig. 2, B and C). Later Fasudil treatment alone did not significantly affect
KPC invasion, and continuous treatment during both contraction and
invasion had no advantage over priming of the matrix alone (Fig. 2, B
and C), demonstrating that transient ROCK targeting can impair PC in-
vasion and could minimize the need for long-term treatments.

Because mechanical cues provided by the ECM have been suggested
to limit response to chemotherapy (46, 47), we next investigated whether
transient Fasudil priming would increase KPC cell response to sub-
sequent Gem/Abraxane treatment in organotypic matrices. Ki67 and
cleaved caspase-3 staining demonstrated that Gem/Abraxane treatment
alone reduced cell proliferation and induced cell apoptosis (Fig. 2, D
and E, black bars versus green bars), as expected given their clinical
use (2). This was improved in Fasudil-primed settings (Fig. 2, D and E,
green bars versus blue bars), although Fasudil priming alone had no effect
on KPC cell proliferation and apoptosis in this context (Fig. 2, D and
E, black bars versus orange bars).

Although these static markers of tumor behavior provide an initial
insight into tumor response, they lack the capacity to monitor more
detailed temporal and spatial information. We therefore opted to lon-
gitudinallymapGem/Abraxane therapy using aCDK1-FRETbiosensor
(22, 23) as a molecular readout of cell cycle arrest induced by chemo-
therapy (27).

A CDK1 biosensor monitors PC cell response
to Gem/Abraxane
PrimaryKPCcells were engineered to express aCDK1-FRETbiosensor,
and the activity of CDK1 was measured by fluorescence lifetime imag-
ing microscopy of the FRET signal (FLIM-FRET; Fig. 3A). In the
lifetime colormaps, lowCDK1 activity is represented by longer lifetimes
and yellow/red colors, whereas high CDK1 activity is represented by
shorter lifetimes and blue/green colors, and areas with no signal are
black (Fig. 3B and fig. S2A).

To confirm that theCDK1-FRETbiosensor reports changes inCDK1
activity, KPC cells were treated with Abraxane to arrest them in mitosis,
whereCDK1 activity is high (22–27), followed by treatmentwith the spe-
cific CDK1 inhibitor RO3306 (fig. S2, B andC) (48). Abraxane induced a
decrease in the fluorescence lifetimes, indicating active CDK1, and treat-
ment with RO3306 reverted the lifetimes to values similar to control,
confirming CDK1 inhibition (fig. S2, C and D, and movie S2). Using
the lifetime distribution, we stratified cells as “CDK1 ON” or “CDK1
OFF” and confirmed changes in CDK1 activity byWestern blot anal-
ysis of pY15-CDK1 (fig. S2, E and F). Similarly, FLIM-FRET analysis
of cells in different stages of the cell cycle confirmed accumulation of
active CDK1 inmitotic cells compared to cells in interphase (fig. S2, G
to I, and movie S3). We also confirmed that expression of the CDK1
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Fig. 1. ROCK inhibition disrupts
collagen matrix integrity.
(A) Schematic of contraction assay
(left), representative images of
telomerase-immortalized fibroblast
(TIF)–collagen matrices, and quan-
tification of matrix area ± Fasudil
over time. n = 3 biological repeats
with three matrices per condition
and per repeat. All individual data
points are represented with SD,
and statistical analysis was per-
formed using the average values
of the three biological repeats.
(B) Representative maximum in-
tensity projections of SHG signal
and quantification of SHG signal
intensity by depth and at peak in
TIF-collagenmatrices after 12 days
of contraction ± Fasudil. n = 3
biological repeats with three
matrices per condition and per
repeat. (C) Bright-field and polar-
ized light imaging of picrosirius
red–stained organotypic matrices
primed ± Fasudil and quantifica-
tion of the intensity of the signal
acquired via polarized light. n = 3
biological repeats with three
matrices per condition and per re-
peat. (D) Contribution and quanti-
fication of signal emitted from
fibers with high, medium, and low
birefringence normalized to total
signal acquired via polarized im-
aging of picrosirius red–stained
collagen matrices ± Fasudil. Thick
remodeled collagen fibers are
highly birefringent (red-orange),
whereas less remodeled fibers
have a lower birefringence (green).
n = 3 biological repeats with three
or two matrices per condition and
per repeat. (E) Herovici’s staining
and quantification of collagen con-
tent in collagenmatrices ± Fasudil.
n = 3 biological repeats with three
matrices per condition and per
repeat. n.s., not significant. (F) Real-
time quantitative polymerase chain
reaction analysis of Col1a1 mRNA
in TIFs ± Fasudil exposure for 72
hours. n = 3 biological repeats.
(G) Time-lapse tracking of fibroblast-
ECM interactions on day 6 of con-
traction ± Fasudil and color-coded

overlay of single protrusion tracking (red, t = 0 min; light green, t = 100 min; yellow, t = 200 min; blue, t = 300 min; dark green, t = 400 min; purple, t = 500 min). Scale
bars, 100 mm. (H) Number of cell protrusions over time in control (left) and Fasudil-primed (right) matrices. Traces are color-coded according to the initial protrusion
number (color key informs on initial number of protrusions at t = 0 min). The graphs on the right indicate protrusion number, length, persistence, and cell circularity in
collagen matrices ± priming with Fasudil (30 cells per group and n = 3 independent matrices). (I) Schematic of GLCM analysis of collagen texture. (J) Representative
single-plane images of SHG signal acquired for GLCM analysis (left) and quantification of GLCM correlation in matrices (right). n = 3 biological repeats with three matrice
per condition and per repeat. (K) Representative images of scanning electron microscopy. (L) Atomic force microscopy analysis of matrix Young’s modulus. n = 3 biologica
repeats with three matrices per condition and per repeat. Results are means ± SEM, unless stated otherwise. P values were determined by unpaired, nonparametric t tes
with Mann-Whitney U correction.
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biosensor did not affect KPC cell response toGem/Abraxane (fig. S2J).
Next, monitoring changes in CDK1 activity upon treatment with
Gem/Abraxane demonstrated a decrease of lifetime and increased ac-
tivation of CDK1 compared to control (Fig. 3B). This aligned with
CDK1 activation and mitotic arrest as confirmed by FACS (fluorescence-
activated cell sorting) and Western blot analyses (fig. S2, K and L)
(49). After validating the CDK1 biosensor, we monitored individual
Vennin et al., Sci. Transl. Med. 9, eaai8504 (2017) 5 April 2017
KPC cell response to chemotherapy within a 3D microenvironment
(Fig. 3C).

Priming with Fasudil improves the spatiotemporal response
of Gem/Abraxane in organotypic matrices
Cancer progression and response to drug treatment can be regulated
by environmental cues within tumor subpopulations, such as areas of
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Fig. 2. Scheduling of priming regimens influences PC cell invasion and Gem/Abraxane efficacy. (A) Schematic representation of organotypic invasion assay with KPC
cells. Matrices were primed with Fasudil during contraction and/or treated with Fasudil during KPC cell invasion. (B) Representative images of pancytokeratin staining in
organotypic matrices. (C) Quantification of KPC cell invasive index upon priming, later, and priming + later treatment with Fasudil. (D) Representative images of Ki67
staining as a marker of cell proliferation and quantification of KPC cells positive for Ki67 (ratio normalized to control) in organotypic matrices after 72 hours of treatment with
Gem/Abraxane. (E) Representative images of cleaved caspase-3 staining as a marker of cell apoptosis and quantification of KPC cells positive for cleaved caspase-3 (ratio
normalized to control) in organotypic matrices after 72 hours of treatment with Gem/Abraxane. Results are means ± SEM. n = 3 biological repeats with three matrices per
condition and per repeat. P values were determined by nonparametric analysis of variance (ANOVA) test with Holm-Sidak correction for multiple comparisons.
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invasion (50–53). Hence, we assessed CDK1 activity in cells invading into
the matrix versus cells on top of the matrix over time (Fig. 3, C to E, and
movie S4). For cells on top of the matrix, we observed a decrease in
FRET lifetime and corresponding activation of CDK1 after 16 hours
Vennin et al., Sci. Transl. Med. 9, eaai8504 (2017) 5 April 2017
of treatment with Gem/Abraxane. This was sustained for 24 hours
and then reverted to higher lifetimes at 48 hours (Fig. 3D, purple line).
An earlier activation of CDK1 in matrices that had been primed with
Fasudil was evident after 8 hours of Gem/Abraxane treatment, and the
YFPmCerulean PLK PBDLinkerCDK1 substrate

m
C

er.

PLK PBD

Phosphorylated 
CDK1 substrate

Y
FP

FRET

“FRET”

MP 840 nm 490 nm

A

PLK PBD

CDK1 
substrate

YFP

“No FRET”

 

MP 840 nm
490 nm

GGCGGCACAGGCGGCACAGGCGGCACAGGCGGCACAGGCGGTAC

 In
ac

ti
ve

A
ct

iv
e

50 μm  

Control (H20) Gem/Abraxane 

75 µm  

Con
tro

l

  (H
20
)

2.2

2.3

2.4

2.5

2.6 *

Gem
/A

bra
xa

neP

CDK1 + ATP

Phosphatases

%
 K

P
C

 c
el

ls
 

m
C

er
ul

ea
n 

life
tim

e 
(n

s)

C
D

K
1 

inactive 
C

D
K

1 
active 

** **

50

75

100

25

0

Con
tro

l

   (
H 20

)

Off CDK1
On CDK1

n = 3, >100 cells

In
ac

tiv
e

B

Treatment with Gem/Abraxane

In
ac

ti
ve

A
ct

iv
e

0 h 8 h 16 h 24 h 48 h

U
np

rim
ed

0 h 8 h 16 h 24 h 48 h
Treatment with Gem/Abraxane

0

20

40

60

80

100

0 h 8 h 16 h 24 h 48 h
Treatment with Gem/Abraxane

** **

**

**

 Invading cells within matrix (30 to 150 µm, n = 3, >40 cells per group)

16 h 24 h 48 h0 h 8 h
Treatment with Gem/Abraxane Treatment with Gem/Abraxane

**

0

20

40

60

80

100

0 h 8 h 16 h 24 h 48 h

P
rim

in
g 

Fa
su

di
l

3.2 ns

1.6 ns

3.2 ns

1.6 ns

“O
N

 C
D

K
1”

 K
P

C
 c

el
ls

 (%
)

“O
N

 C
D

K
1”

 K
P

C
 c

el
ls

 (%
)

D

CDK1 active CDK1 inactive

50 µm  

Gem
/A

bra
xa

ne

Unprimed, Gem/Abraxane
Priming Fasudil, Gem/Abraxane

Unprimed, Gem/Abraxane
Priming Fasudil, Gem/Abraxane

m
C

er
ul

ea
n 

life
tim

e 
(n

s)
m

C
er

ul
ea

n 
life

tim
e 

(n
s)

m
C

er.

Proliferative, noninvading cells (top matrix, <30 µm)

Treatment with Gem/Abraxane

In
ac

ti
ve

A
ct

iv
e

0 h 8 h 16 h 24 h 48 h

U
np

rim
ed

P
rim

in
g 

Fa
su

di
l

3.2 ns

1.6 ns

50 µm  

 Invading cells within matrix (30 to 150 µm)E

KPC cell/ECM interaction CDK1 activity

KPC cells (mCerulean)
Collagen I (SHG signal)

In
ac

ti
ve

A
ct

iv
e

CDK1 activity in organotypic matrices

mCerulean lifetime map

50 µm  

C

Unprimed, Gem/Abraxane
Priming Fasudil, Gem/Abraxane

2.2

2.4

2.6

Unprimed, Gem/Abraxane
Priming Fasudil, Gem/Abraxane

2.2

2.4

2.6

Proliferative, noninvading cells (top matrix, <30 µm, n = 3, >60 cells per group)

Tumor cell subpopulation analysis
Spatial dynamics

Gem/Abraxane

Top matrix

Invading cell
5 of 17
Fig. 3. Spatiotemporal
analyses of combination
therapy are performed
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(A) Schematic representation
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(23). PLK, Polo-like kinase; PBD,
Polo-box domain; ATP, aden-
osine 5′-triphosphate; YFP,
yellow fluorescent protein;
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sentative mCerulean lifetime
maps, quantification ofmCer-
ulean lifetimes, and stratifica-
tion of CDK1 activity in KPC
cells upon treatment with
Gem/Abraxane for 24 hours
in 2D settings. n = 3 inde-
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with one technical replicate
per repeat. (C) Represent-
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matrices. (D) Monitoring of
CDK1 activity in cells on top
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activation of CDK1 was prolonged (Fig. 3D, orange line). Monitoring of
CDK1 at depth demonstrated a distinctly delayed pattern of response to
Gem/Abraxane in invading cells (compare the purple line in Fig. 3D to
that in Fig. 3E); however, Fasudil priming increased the response of
invasive cells at later time points compared to Gem/Abraxane treatment
alone (Fig. 3E). The ability to detect differences in drug efficacy in a spa-
tial manner allowed us to uncover that proliferating cells on top of the
matrix respond well to Gem/Abraxane therapy alone, whereas invading
and less proliferative cells (confirmed in fig. S2M) (50) are less susceptible
to cytotoxic drugs. Thus, although Fasudil interference with stroma-
tumor feedback improves targeting of cells on top of the matrix, it
may also have additional, yet somewhat delayed, benefits by rendering
invasive cells more vulnerable to chemotherapy.

Priming live primary tumors enhances
Gem/Abraxane efficacy
We next generated subcutaneous KPC-CDK1 xenografts, and once
primary tumors were palpable, mice were primed with Fasudil for 3 days
before treatment with Gem/Abraxane (Fig. 4A). Twenty-four hours after
administration of Gem/Abraxane, live tumor tissues were exposed using
a skin flap technique for intravital imaging (Fig. 4B). SHG imaging and
polarized light microscopy of picrosirius red staining of KPC xenografts
confirmed that Fasudil priming reduces fibrillar collagen organization in
this setting, whereas no significant change in collagen content was ob-
served (Fig. 4, C and D; fig. S3, A and B; and movie S5). In vivo FLIM-
FRET analysis of the CDK1-FRET biosensor (movie S6) demonstrated
activation of CDK1 upon Gem/Abraxane treatment alone, which was
enhanced in Fasudil-primed conditions (Fig. 4E, green bar versus blue
bar), in line with findings in organotypic matrices (Figs. 2 and 3). Fasudil
priming alone had no significant effect on CDK1 activity in live tumors
(Fig. 4E, black bar versus orange bar). IHC analyses of pMYPT1 in KPC
xenografts confirmed inhibition of ROCK signaling upon Fasudil priming
(fig. S3C), whereas Ki67 and cleaved caspase-3 analyses confirmed that
although Fasudil priming alone had no significant effect on cell prolifer-
ation or survival, it improved the effectiveness of Gem/Abraxane in this
setting (fig. S3, D and E). To assess whether ECM-independent mecha-
nisms may also play a role in the enhanced response to chemotherapy,
we examined the known role of Fasudil as a vasodilator in vivo (28) by
evaluating vasculature abundance using anti-CD31 staining. This demon-
strated an increase in CD31-positive cells upon treatment with Fasudil
(Fig. 4F). We next injected quantum dots into mice bearing subcutaneous
KPC tumors to assess whether vascular patency was altered in Fasudil-
treated conditions (39, 54). Here, an increase in quantum dot signal was
observed outside blood vessels, with quantum dots leaking into the tumor
tissue in Fasudil-primed conditions compared to control (Fig. 4, G and
H, and movie S7). Because PC patients often present with locally invasive
and metastatic disease at diagnosis (55), we next investigated whether
Fasudil priming alone or in combination with chemotherapy alters meta-
static colonization of secondary sites.

Priming with Fasudil enhances chemotherapy response at
secondary sites and reduces metastatic spread
To mimic systemic ROCK inhibition or adjuvant therapy in the pres-
ence of circulating tumor cells, we performed intrasplenic injections of
KPC cells expressing theCDK1-FRET biosensor in parallel with Fasudil
administration (Fig. 5, A and B, and movie S8). FLIM-FRET measure-
ments of the CDK1 biosensor in liver metastases revealed that priming
with Fasudil enhanced Gem/Abraxane efficacy at this secondary site
(Fig. 5, C to E). In line with our results in primary tumors (Fig. 4),
Vennin et al., Sci. Transl. Med. 9, eaai8504 (2017) 5 April 2017
we observed enhanced CD31 staining and increased number of micro-
vessels with detectable lumens in the livers of Fasudil-treated mice (Fig.
5F and fig. S4A), which could partly explain the observed enhanced
drug response. Pathological and IHC analyses on serial sections of
metastases (Fig. 5, G and H) confirmed that mice treated with Fasudil
and Gem/Abraxane showed a marked reduction in metastatic spread
compared to Gem/Abraxane treatment alone. This is in line with recent
work regarding the establishment of the metastatic niche (56, 57) and
prompted us to assess micrometastatic events, such as cancer cell ex-
travasation, adhesion, response to shear stress, and colonization after
Fasudil priming.

Priming hinders extravasation and spread in the liver
while sensitizing cells to shear stress and reducing
anchorage-independent growth
To identify pancreatic tumor cells that had recently extravasated in the
liver and breached thematrix surrounding blood vessels, we stained liv-
er tissues with Elastica van Gieson and PDX-1 (Fig. 6, A and B). Quan-
tification of extravasation events revealed that priming with Fasudil
impaired extravasation compared to control and Gem/Abraxane treat-
ment (Fig. 6, A to C), suggesting that Fasudil may act as a potential anti-
adhesion drug. This mirrors recent work showing that targeting early
“homing” events in the liver using anti-adhesion drugs can have addi-
tional advantages over cytotoxic targeting alone (58, 59). To address the
anti-adhesion effect of Fasudil in a more controlled platform, we used
cell-derivedmatrices (CDMs) (60, 61). Here, priming with Fasudil dur-
ing ECM deposition and remodeling reduced ECM integrity (fig. S4, B
to D). KPC cells were then seeded onto CDMs in the presence or ab-
sence of Gem/Abraxane (Fig. 6, D and E), and time-lapse tracking (fig.
S4E) revealed a marked reduction in KPC cell adhesion in Fasudil-
primed conditions over time compared to control and Gem/Abraxane
counterparts (Fig. 6E, compare black and orange lines). In addition, the
cytotoxic effects of Gem/Abraxane combined with Fasudil’s anti-adhesion
effect increased the reduction in KPC attachment and viability (Fig. 6E,
compare green to blue lines at 24hours). Thiswas in linewithFLIM-FRET
analysis of CDK1 on CDMs and in the liver in vivo (Fig. 5C and fig. S4F),
where Fasudil priming enhanced response to Gem/Abraxane.

To further assess the observed reduction of liver colonization upon
Fasudil priming, we examined the viability of cells in response to shear
stress and anchorage-independent growth (AIG), which circulating tu-
mor cells are subjected to in vivo. KPC cells were primed with Fasudil
and exposed to controlled shear stress as previously described (Fig. 6F)
(62) and thenplated onCDMs tomeasure their ability to attach, survive,
or proliferate after shear stress. Cell attachment on CDMs and cell
growth were reduced upon treatment with Fasudil, with a concomitant
increase in apoptosis (Fig. 6G), as confirmed by FACS analyses (Fig.
6H). These data, along with reduced long-term AIG in Fasudil-primed
conditions (Fig. 6I), point to a role of ROCK inhibition in sensitizing
cells to shear stress in the systemic circulation and suggest an additional
way in which Fasudil can impinge on metastasis in PC (10, 13, 63, 64).

Fasudil priming reduces cell streaming and metastatic
niche remodeling
To assess whether priming with Fasudil affects KPC cell movement, we
performed time-lapse monitoring of KPC cell streaming on CDMs
primed with or without Fasudil and quantified cell movement anisot-
ropy as a readout of coordinated cell movement (Fig. 7A andmovie S9)
(65). In control conditions, concerted streams of cells moving in a
coordinated, organized manner were observed (Fig. 7A, green arrows)
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(65, 66). This was reduced in cells seeded on Fasudil-primed matrices,
where noncoordinated cell movement was evident over time (Fig. 7, A
and B), and was further supported by a clear decrease in cell stream
Vennin et al., Sci. Transl. Med. 9, eaai8504 (2017) 5 April 2017
width compared to control (Fig. 7C). We next studied whether Fasudil
priming altered metastatic spread patterns in the liver using IHC anal-
ysis of PDX-1–stained serial sections. Here, we observed different
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morphology of metastases upon priming with Fasudil. In control and
Gem/Abraxane conditions, we identified elongated and malleable
emboli of KPC cells spreading throughout the liver tissue [Fig. 7, D
(top) and E], whereas in Fasudil and Gem/Abraxane or Fasudil alone
conditions, metastases were round, and elongated emboli were ablated
[Fig. 7, D (top) and E]. This observation suggests that Fasudil priming
Vennin et al., Sci. Transl. Med. 9, eaai8504 (2017) 5 April 2017
and manipulation of the ECM during the early stages of metastatic col-
onization (59) alter spread in the host tissue, as evidenced by an overall
reduction in metastatic burden in these conditions (Fig. 5, G and H).

ECM remodeling can also provide cancer cells with a “fibrotic
refuge” (67), supporting tumor growth and limiting chemotherapeutic
targeting (68). Because Fasudil priming improved Gem/Abraxane
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Fig. 5. Priming with Fasudil improves chemotherapy at secondary sites and decreases metastatic burden. (A) Schematic representation of intrasplenic injection
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effectiveness in the liver (Fig. 5, C to E), we assessed the ability of
KPC cells to remodel the ECM upon priming with Fasudil. Using
CDMs as a model system, we found that KPC cells can remodel the
Vennin et al., Sci. Transl. Med. 9, eaai8504 (2017) 5 April 2017
matrix of unprimed CDMs, as measured by increased SHG signal
over time (Fig. 7, F and G, black lines). This was impaired for KPC
cells seeded on Fasudil-primed CDMs, where SHG intensity did not
C
el

l a
re

a

N
um

be
r o

f e
xt

ra
va

sa
tio

n 
ev

en
ts

Host cell (liver cell)
KPC cancer cell (PDX-1+)
Endothelial cell 

Extravasated KPC cells

Extravasated and 
colonizing KPC cells

Gem/Abraxane 

Priming Fasudil

Priming Fasudil, 
Gem/Abraxane

Control (unprimed)

D E

Priming Fasudil
Gem/Abraxane

– – + +
– + + –

BA C

E
la

st
ic

a 
va

n 
G

ie
so

n
P

D
X

-1
 

Control (saline) Gem/Abraxane
   Priming Fasudil, 

Gem/Abraxane Priming Fasudil

Antiadhesive effect 
of Fasudil priming

Antiadhesive effect +
 cytotoxic effect of Gem/Abraxane

24 hours after seeding KPC cells
Tracking adhesion KPC cells onto CDMs

n = 3 
5 FOV per technical replicate

max
3

max (wall shear stress)

min (axial shear stress)

P2 P3 P4 P5P1

Cell-derived 
matrix

R

+Fasudil

–Fasudil

FACS

F
G

0.00

0.25

0.50

0.75

P5
/P

0 
ce

ll n
um

be
r r

at
io *

Cell proliferation

H
Con

tro
l

Fa
su

dil
0

25

50

75

100

P5
/P

0 
ce

ll n
um

be
r r

at
io *

Cell attachment 
onto CDMs

0.0

0.5

1.0

1.5

2.0

2.5

%
 c

el
ls

 p
os

itiv
e 

fo
r C

C
3

Apoptosis 
(cleaved caspase-3 staining)

I
Single-cell suspension

 in 0.1% agarose

Day 0 Day 7 Day 10

0

10000

20000

30000

40000

50000Cell cluster - day 10 *
* * *2

Single-cell suspension - day 0

Control Gem/Abraxane Gem/Abraxane
Fasudil, 
Gem/Abraxane Fasudil Control Fasudil

BV

M

BV
M

BV

BVM
M

M

M

Vessel-associated
collagen fiber

C
lu

st
er

 a
re

a 
(

m
2 )

BV

BV

M

0

200

400

600

800

1000
****
****

n = 4 mice per group; 5 serial sections per animal

Con
tro

l

Fa
su

dil

Con
tro

l

Fa
su

dil

n = 3

BV

M M

BV

M
M

M
M

M

BV

BV

BV

BV

0 10 20 30 40
0.00

0.05

0.10

0.15

0.20

0.25

Time (hours)

Fasudil, 
Gem/Abraxane

Repeated exposure to controlled shear stress

0

1

2

3

A
nn

ex
in

-p
os

iti
ve

 c
el

ls
 

(n
or

m
al

ize
d 

ra
tio

)

0.0

0.5

1.0

1.5

2.0

2.5

A
nn

ex
in

- a
nd

 P
I-p

os
iti

ve
 c

el
ls 

(n
or

m
al

ize
d 

ra
tio

)

0 103 104 105

0

103

104

105

0 103 104 105 0 103 104 105 0 103 104 105

Annexin V – FITC

P
I

7% 7.3% 10.2% 14.7%

15% 17.7% 21.7% 29.7%

Control P0 Control P5 Fasudil P0 Fasudil P5

Annexin only Annexin and PI

Con
tro

l P
0

Con
tro

l P
5

Fas
ud

il P
0

Fas
ud

il P
5

Con
tro

l P
0

Con
tro

l P
5

Fas
ud

il P
0

Fas
ud

il P
5

Priming Fasudil      –         –        +         +
Gem/Abraxane      –         +       +          – 

** P0: no exposure to shear stress
P5: exposure to 5 repeated shear stress
n = 5

n = 3

*

****

***

 = 1950 dyne/cm2
9 of 17
s

,

Fig. 6. Priming with Fasudil
decreases KPC cell extrava-
sation and adhesion in sec-
ondary sites andmakes KPC
cells more sensitive to shear
stress. (A) Representative
images of Elastica van Gieson
(marker of vessel-associated
collagen fibers) staining and
PDX-1 (marker of PC cells)
IHC staining in liver tissues af-
ter treatment with control
(saline); Gem/Abraxane alone;
Fasudil, then Gem/Abraxane;
and Fasudil alone. BV, blood
vessel; M, metastasis. Scale
bars, 100 mm. (B) Schematic
representation of KPC cells
that breached through the
matrix surrounding blood ves-
sels observed in liver tissue.
(C) Quantification of KPC ex-
travasation in the liver upon
treatment with control (saline);
Gem/Abraxane alone; Fasudil,
then Gem/Abraxane; and
Fasudil alone. n = 4 mice per
group and five serial sections
per mouse (100-mm step).
(D) Representative phase
images of KPC cells 24 hours
after seeding onto CDMs
primed or unprimed with
Fasudil and treated with
or without Gem/Abraxane.
(E) Automated quantifica-
tion of KPC cell attachment
to CDMs over time. n = 3
biological repeats with three
CDMs per condition and per
repeat and five FOVs per
CDM. (F) Schematic repre-
sentation of fluid shear stress
assay, adapted from (63).
(G) Quantification of cell at-
tachment onto CDMs, growth,
and apoptosis after shear
stress for KPC cells ± Fasudil
pretreatment. P0, cells not
subjected to shear stress; P5,
cells subjected to five consec-
utive exposures to shear stress.
Y-axis values (P5/P0 ratios)
are values for cells subjected

to five exposures to shear stress divided by values for cells not exposed to shear stress. n = 3 biological repeats with one CDM per condition and per repeat. (H) FACS analysi
of annexin and propidium iodide (PI) amounts in KPC cells 24 hours after shear stress. Representative FACS plots for one of the replicates (top) and quantification of five
replicates with means ± SEM (bottom). Annexin V–positive population was defined as FITC+ (fluorescein isothiocyanate–positive)/PI− (red gate), and all dead cells were defined
as FITC+ and/or PI+ (blue gate). (I) Schematic representation of treatment timeline for AIG assay with representative images and quantification of AIG of KPC cells cultured ±
Fasudil and ± Gem/Abraxane. n = 3 biological repeats with three wells per condition and per repeat. Results are means ± SEM. P values were determined by unpaired
nonparametric t test with Mann-Whitney U correction (comparison between two groups) and nonparametric ANOVA test with Holm-Sidak correction for multiple comparisons.
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Fig. 7. Priming with Fasudil
impairs metastatic spread and
remodeling of secondary sites.
(A) Representative images of
KPC cell streamsonCDMsprimed
with control or with Fasudil
62 hours after seeding. (i) Phase
image, (ii) cell shape mask,
and (iii) inset with arrows show-
ing cell stream directionality.
(B) Quantification of KPC cell
movement anisotropy over time
using FibrilTool (65). (C) Cell
stream width 62 hours after
seeding on CDMs. n = 3 biolog-
ical repeats with three CDMs
per condition and per repeat.
(D) Representative images of
PDX-1 staining, identifying dif-
ferent morphologies of meta-
static emboli upon treatment
with control (saline); Gem/
Abraxane; Fasudil, then Gem/
Abraxane; or Fasudil alone. Black
arrowheads point at lines of
KPC cells. Green dashed lines
delimit individual metastases.
(E) Schematic representation
of lines of KPC cells observed
by IHC analysis in the liver (top)
and quantification of the num-
ber of lines on serial sections
upon treatment with control
(saline); Gem/Abraxane; Fasudil,
then Gem/Abraxane; or Fasudil
alone. n = 4mice and five serial
sections per mouse (100-mm
step). (F) Representative maxi-
mum projection of SHG imag-
ing. (G) Quantification of SHG
signal derived from primed
(blue lines) or unprimed (black
lines) CDMs before seeding KPC
cells (thin lines) and 48 hours
after seeding KPC cells (bold
lines). n = 3 independent bio-
logical repeats with one CDM
per condition and per repeat.
(H) Representative maximum
intensity projections of SHG
imaging. (I) Quantification of
SHG signal intensity in host liv-
er tissue upon treatment with
control (saline); Gem/Abraxane;
Fasudil, then Gem/Abraxane; or
Fasudil alone. n = 4 mice per
group and five FOVs per mouse.
(J) Representative maximum
intensity projections of SHG

imaging. (K) Quantification of SHG signal intensity in liver metastases upon treatment with control (saline); Gem/Abraxane; Fasudil, then Gem/Abraxane; or Fasudil alone
n = 4 mice per group and five FOVs per mouse. Results are means ± SEM. P values were determined by unpaired, nonparametric t test with Mann-Whitney U correction
(comparison between two groups) and nonparametric ANOVA test with Holm-Sidak correction for multiple comparisons.
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significantly increase after seeding of KPC cells (Fig. 7, F and G, blue
lines). Moreover, KPC cell protrusions on primed CDMs were also dis-
rupted compared to control (fig. S4, G to I), in line with earlier observa-
tions, and this prompted us to assess the amount of fibrillar collagen
within liver metastases. Here, we found that remodeling of the metastatic
niche was impaired upon priming with Fasudil (Fig. 7, H to K, and fig.
S4J). Hence, priming may make secondary tissues less permissive to the
establishment of metastases and expose cancer cells to a less favorable
environment (67). This may partly explain the enhanced response to
chemotherapy at secondary sites observed in Fasudil-primed conditions.

Disruption of SRC signaling and actomyosin cytoskeleton
dynamics with Fasudil may sensitize KPC cells
to chemotherapy
In line with the reported role of ECM-integrin outside-in signaling in
cancer (47, 69), we assessed whether the integrin-SRC signaling axis is
altered upon priming with Fasudil. Using a SRC-FRET biosensor (fig.
S5A) (70) in 3D organotypic matrices, we found that SRC activity is
reduced after manipulation of the ECM with Fasudil (fig. S5, B and
C) (70). Intravital imaging in subcutaneous KPC tumors also confirmed
inhibition of SRC signaling in response to Fasudil priming in vivo (fig.
S5, D and E). This is in line with the recent role that SRC has been pro-
posed to play in both sensitizing cancer cells to chemotherapy (71–74)
and driving ECM-dependent events in PC (75–77). Additionally,
ROCK inhibitors can induce mitotic defects (78–81), and we therefore
assessed early-to-mid and late mitosis in KPC subcutaneous tumors.
This revealed that although we do not see any significant change of cell
proliferation or death upon Fasudil priming (Fig. 4E and fig. S3, D and
E), ROCK inhibition induces an accumulation of cells in late mitosis
andmultinuclear cells (fig. S5, F andG), thereby potentiallymaking cells
more responsive to subsequent treatment with antimicrotubule chemo-
therapy. Together, our data in cells from the KPC model suggest that
priming delays PCprogression in both primary and secondary sites.We
therefore sought to translate our findings to patient-derived tumors.

Patient-derived models reveal potential for tailored,
short-term priming strategy in PC
Because PC is highly heterogeneous (29, 82), we next assessed whether
fibrillar collagen abundance could influence tumor response to priming
with Fasudil before chemotherapy. SHG analysis of PDX samples from
the APGI cohort (29) allowed us to identify TKCC2 as an example of a
“lowECMPDX”andTKCC5asanexampleofa“highECMPDX” (Fig. 8A).
Patient-derived cancer cell lines (PDCLs) isolated from the respective
PDXs (29) were then subcutaneously reinjected into mice (Fig. 8B). Sub-
sequent SHG imaging revealed that reinjectedPDCLs recapitulatedmany
of the original features of the collagenmatrix (Fig. 8B), demonstrating the
capacity of PDCLs to remodel the tissue and to “activate” host fibroblasts
to maintain inherent features of the tumor.

To assess PDCL response to the priming regimen, we first estab-
lished patient-personalized organotypic matrices, where cancer-associated
fibroblasts (CAFs), “activated” by the respective patient-derived tumor
cells in vivo, were isolated from PDXs, embedded in collagen, and char-
acterized by IHC staining with pancytokeratin, a–smoothmuscle actin,
and fibroblast activation protein (figs. S6 and S7). After remodeling of
the matrix by CAFs, matched patient-derived cancer cells were seeded
on top of the contractedmatrices (figs. S6, A andC, and S7, A andC), as
previously performed with KPC cells (Figs. 2 and 3). Priming with Fas-
udil impaired the ability of the “high ECM” TKCC5 CAFs to remodel
collagen, as demonstrated by SHG analysis (fig. S6, B and D to F), and
Vennin et al., Sci. Transl. Med. 9, eaai8504 (2017) 5 April 2017
resulted in decreased cancer cell invasion (fig. S6, G and H) and
increased response to Gem/Abraxane treatment (fig. S6, I and J). Con-
versely, priming had no effect on “low ECM” TKCC2 CAF-driven col-
lagen contraction (fig. S7, B andD to F) and did notmodify response to
chemotherapy (fig. S7, G and H). This prompted us to assess TKCC2
and TKCC5 response to priming with Fasudil in live tumors.

PDCLs were engineered to express the CDK1-FRET biosensor,
and in vitro FLIM-FRET measurements confirmed that the biosensor
can distinguish changes in CDK1 activity in both lines (figs. S6, K and
L, and S7, I and J), as previously achieved with KPC cells (fig. S2).
CDK1-PDCLs were subcutaneously injected into mice, and when tu-
mors were fully established (average tumor volume, 180 mm3, as pre-
viously described for KPC tumors; figs. S6M and S7K), mice were
subjected to 3 days of priming with Fasudil before administration of
Gem/Abraxane and intravital imaging (figs. S6M and S7K, timelines).
Although SHG analysis demonstrated a reduction of fibrillar collagen
abundance in the high ECM TKCC5 upon manipulation with Fasudil
(Fig. 8C), priming had no effect on the matrix of low ECM TKCC2
(Fig. 8C). Intravital analysis of CDK1 activity in response to chemo-
therapy revealed that priming with Fasudil induces a robust increase
of TKCC5 response to Gem/Abraxane in vivo (Fig. 8D, left). A moderate
improvement of TKCC2 response to chemotherapy was observed (Fig.
8D, right), demonstrating a graded response to the priming strategy in
relation to initial PDX collagen status (Fig. 8E).

Last, given the enhanced response to priming found in the high
ECM TKCC5 model, we assessed the long-term effects of priming on
therapeutic response in an orthotopic patient-derived model. Ortho-
topic injections of TKCC5 cells were conducted, and primary tumors
were allowed to grow until average in vivo imaging system (IVIS) lucif-
erase signal reached 5 x 107 photons/s (fig. S8A). Mice were subjected to
cycles of priming with Fasudil before administration of Gem/Abraxane
until the experimental end point (Fig. 8F and fig. S8A). Survival was
increased by the priming regimen compared to treatment with Gem/
Abraxane alone (mean survival: Gem/Abraxane, 51 days; Fasudil priming
and Gem/Abraxane, 75 days) (Fig. 8F). Mice receiving Fasudil priming
before Gem/Abraxane also had a reduced primary tumor burden at the
ethical end point (fig. S8B). Time to detection of metastasis observed via
whole-body IVIS imaging was also delayed by the priming regimen com-
pared to control (fig. S8, A and C).

Finally, we created an in-house automated SHG tool to analyze the
International Cancer Genome Consortium (ICGC) cohort of patient
biopsy samples (231 ICGC samples) (Fig. 8G and fig. S8, D and E). Al-
though we found no significant differences in survival or clinicopatho-
logical variables with regard to bulk patient ECM content (fig. S8F), in
line with recent work (10), this rapid and label-free biopsy imaging ap-
proach could be used as a companion personalized biomarker for cur-
rent stromal-based combination therapies in PC, where the initial
amount of tumor ECM could guide whether a patient would be suitable
for “transient” stromal intervention (Fig. 8, D to F) (12, 83).
DISCUSSION
Combined therapies andmultimodal targeting have improved outcomes
in multiple cancers (84), but little is known on how to streamline these
methods to provide maximum benefit. Here, we demonstrate that tran-
sient priming of primary and secondary sites via ROCK inhibition im-
proves chemotherapy efficacy and retards the onset of metastasis in PC.

Mechanoreciprocity and host tissue properties play a vital role in
nascent tumors, from providing initial survival signals to driving cancer
11 of 17
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Fig. 8. ECM-stratified patient-
derived tumors respond in a
graded manner to priming
strategy.(A) Schematic repre-
sentation of PDX establishment
and representative maximum
projections of SHG imaging in
high ECM and low ECM PDXs
from the APGI PDX cohort. n =
3 cores per group. (B) Patient-
derived cell lines were isolated
from PDXs, purified, and rein-
jected subcutaneously into non-
obese diabetic–severe combined
immunodeficient mice. Represent-
ative maximum intensity projections
of SHG imaging and quantification
of high ECM and low ECM PDCL
xenografts. n = 3 tumors per group.
(C) Representativemaximum inten-
sity projections of ex vivo SHG
imaging in subcutaneous TKCC5
(left) and TKCC2 (right) xenografts.
Quantification of SHG signal in-
tensity in subcutaneous TKCC5
and TKCC2 xenografts upon treat-
ment with control (saline), Gem/
Abraxane, Fasudil and Gem/
Abraxane, or Fasudil alone. (D) Rep-
resentative images and quantifica-
tion of in vivo measurements of
mCerulean lifetime and CDK1 activ-
ity in subcutaneous TKCC5 (left)
and TKCC2 (right) xenografts upon
treatment with control (saline),
Gem/Abraxane, Fasudil and Gem/
Abraxane, or Fasudil alone. (E) Graded
response to priming before Gem/
Abraxane compared to Gem/
Abraxane alone in TKCC2 and
TKCC5 xenografts. Results are
means ± SEM. TKCC2: n = 5 mice
per group; TKCC5: n = 4 for con-
trol, n = 4 for Gem/Abraxane,
n = 4 for Fasudil, then Gem/
Abraxane, n = 3 for priming with
Fasudil. For SHG analysis, five
FOVs per mouse were imaged;
for FLIM-FRET analysis, 80 cells
per mouse with three ROIs per
cell were quantified. (F) Repre-
sentative schematic of orthotopic
injection of TKCC5-luciferase cells
and treatment cycle. Kaplan-Meier
analysis of survival for mice ortho-
topically injected with TKCC5
cancer cells and undergoing treat-

ment cycles with control (saline); Gem/Abraxane; Fasudil, then Gem/Abraxane; and Fasudil alone. Control, n = 10 mice; Fasudil priming alone, n = 9 mice; Gem/Abraxane, n = 9
mice; Fasudil, then Gem/Abraxane, n = 7 mice. (G) Schematic representation of in-house automated SHG analysis of the ECM in the ICGC human tissue microarray (TMA) cohort
with examples of SHG signal in cores (triplicates) from patients with high, medium, and low SHG signal. Results are means ± SEM. P values were determined by unpaired
nonparametric t test with Mann-Whitney U correction (comparison between two groups) and nonparametric ANOVA test with Holm-Sidak correction for multiple comparisons.
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cell proliferation, invasion, andmetastasis (85, 86). Here, we use a com-
bination of 3D in vitro and in vivo platforms with mouse- and patient-
derived PC cells to guide and optimize tissue manipulation scheduling
in the context of Gem/Abraxane therapy.Our results suggest that short-
term inhibition of cellular tension in the whole tumor tissue before
chemotherapy reduces cancer progression and improves response to
treatment. Despite the distinct composition of the ECM in our different
in vitro and in vivomodels, our data reveal a similar effect in all settings,
suggesting that this is a general phenomenon for multiple microenvi-
ronments. This suggests that depriving cancer cells of cues provided by
the surrounding matrix at both primary and secondary sites renders
them more sensitive to cytotoxic drugs, partly via impaired integrin
signaling, as previously demonstrated in melanoma (67). This is in line
with our recent findings that inhibition of collagen cross-linking via
antibody-targeted therapy against lysyl oxidase in combination with
Gem effectively impaired PC progression (12). ROCK inhibition also
seems to induce accumulation of mitotic defects in vivo, potentially
making cells more susceptible to subsequent chemotherapy (3).

The molecular fingerprint of human PC is highly heterogeneous
(29, 82). High-throughput SHG analysis of the human ICGC cohort
revealed heterogeneity in collagen profiles across patients. Using intra-
vital monitoring of chemotherapy efficacy in patient-derived samples,
we showed a graded response to Fasudil priming strategies relative to
the initial fibrillar collagen profile in tissue biopsies. Our findings
thereby suggest that high amounts of fibrillar collagen could potential-
ly serve as a companion biomarker to identify patients who are likely
to benefit from transient ECM manipulation before chemotherapy.
This is in line with current clinical stroma-targeting therapies, where
such companion biomarkers are being used for hyaluronic acid target-
ing, supporting matrix manipulation therapy in a subpopulation of
patients (83). Fine-tuned ECM-based stratification could therefore fa-
cilitate a more tailored therapeutic approach to matrix manipulation
therapy in PC and could be used as an alternative to the “all patients”
chronic stromal targeting approach in this disease.

Although we demonstrate disruption of the physical properties
of the ECM upon manipulation with Fasudil, we also reveal that re-
purposing Fasudil’s clinical vasodilatory effects (28) through transient
priming before chemotherapy improves short-term tumor blood per-
fusion and, thereby, drug delivery. This is in line with its current use
for the treatment of cerebral vasospasm after subarachnoid hemor-
rhage in Japan (87–89) while avoiding any long-term toxic effects that
could arise from chronic treatment (36, 39). Therefore, targeting ECM-
dependent and ECM-independent changes in cancer appears to be an
important advantage of transient ROCK inhibition compared to chron-
ic ECM targeting alone (39, 90, 91) and warrants further consideration
with regard to repurposing the off-patent drugs in PC (92).

Monitoring the onset of hepatic micrometastasis revealed that
manipulation of tissue at secondary sites impairs liver colonization.
Analyses on CDMs and in the liver demonstrated that priming with
Fasudil alters KPC cell attachment, coordinated movement, and mal-
leable spread of the tumor emboli, potentially via changes of themechanical
and biochemical properties of the host ECM, thereby altering ECM-
cell interactions and durotaxis (93, 94). Furthermore, the Rho-ROCK-
LIMK pathway drives path generation by leading tumor cells (66, 95),
and hence, ROCK inhibition with Fasudil may inhibit path generation
and coordinated cell movement of tumor cells in this context (95, 96).
Additionally, priming with Fasudil may decrease cell survival in the
bloodstream via impaired tolerance to shear stress (97). Whereas previ-
ous studies have reported conflicting findings on the effects of ROCK
Vennin et al., Sci. Transl. Med. 9, eaai8504 (2017) 5 April 2017
inhibition on cell invasion (98–100), short-term treatment with Fasudil
did not show adverse effects, unlike chronic ROCK targeting. We also
reveal that Fasudil priming impairs the ability of metastasized cells to
create a fibrotic refuge, potentially enhancing their vulnerability to sub-
sequent chemotherapy (67). We propose that instead of completely ab-
lating stroma–cancer cell feedback, transient priming of tissue by Fasudil
before chemotherapy can impair cancer cell establishment, survival,
growth, and spread at multiple sites in vivo while minimizing negative
effects that may arise from chronic treatment.

Although Fasudil monotherapy or combinations with selected
cardiovascular agents have previously been shown to be safe in humans
by numerous large-scale studies (87–89), this agent is yet to be com-
bined with chemotherapies in the clinic. A phase 1 clinical trial would
determine the safety of transient “priming” regimenwith Fasudil before
treatment with Gem/Abraxane in patients. Our study used patient
TMAmaterial from the ICGC cohort (82), which is composed of largely
early-stage tumors (I, IIa, and IIb) and hence does not equally cover the
full spectrum of the disease. Validation studies would ideally include a
cohort of more metastatic disease to fully appreciate the utility of our
proposed SHG companion biomarker. Additionally, given the dual
effects of Fasudil priming on both the ECM and the tumor vasculature,
combination of both SHG and CD31-based biomarkers might further
facilitate the identification of patients who could benefit from priming
before chemotherapy.

Newer ROCK inhibitors such as K-115 (Ripasudil), which have
recently entered the clinic for the treatment of glaucoma (101, 102) or
are currently in the clinical testing pipeline, including phase 2 clinical
trial for glaucoma (AMA0076) (103), or CCT129254 or AT13148,
which reduce metastasis in other cancers (104), could also have similar
applications (105). Patient presentation in PC ranges from early local
invasion at the time of diagnosis to late metastatic disease (106). We
have demonstrated multisite benefits using priming in combination
with standard-of-care therapy (summarized in fig. S9) and envision
its potential use to treat PC at several stages.
MATERIALS AND METHODS
Study design
This study interrogates the effect of transientmanipulation of tissue ten-
sion via ROCK inhibition on PC progression and response to Gem/
Abraxane. In vitro organotypic and CDM experiments were performed
in independent biological triplicates, with three technical replicates per
repeat and per treatment group. For in vivo experiments, numbers of
mice used for each model are outlined in corresponding figures and
figure legends. In vivo priming started when tumor volume reached
180 mm3 (average size) or 7 × 105 photons/s (average IVIS signal).
Mice for which tumor volume or IVIS signal was 10% lower or high-
er than the average value before enrollment were excluded from
analysis.

FLIM-FRET analysis of CDK1 and SRC activity in vitro was con-
ducted in >30 cells per group in three independent biological repeats.
In vivo analysis of CDK1 and SRC was performed in 80 cells per mouse,
with measurements in three subcellular areas per cell to generate an av-
erage value for CDK1 specifically, whereas measurements of lifetime in
the whole cell (one value per cell) were performed for analysis of SRC
activity.

IHC, SHG, picrosirius red, and GLCM analyses were conducted
on three representative FOVs in organotypic matrices and CDMs and
in five representative FOVs in subcutaneous xenograft and intrasplenic
13 of 17
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experiments. Metastatic burden, extravasation, and metastasis morphol-
ogy in the liver were analyzed in serial sections (five sections per organ
with a 100-mm step). Experimental end points for survival experiments
were in compliance with Garvan Ethics Committee guidelines (13/17,
14/06, 14/11, and 16/13 protocols).

Statistical analysis
Unless stated otherwise, P values were determined by unpaired, non-
parametric t test with Mann-Whitney U correction (comparison be-
tween two groups) or nonparametric ANOVA test with Holm-Sidak
correction for multiple comparison (more than two groups). Kaplan-
Meier curves were compared using a log-rank Mantel-Cox test. Exact
P values for all figures are provided in table S1.
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SUPPLEMENTARY MATERIALS
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Materials and Methods
Fig. S1. ROCK inhibition with Fasudil and Y-27632 impairs ECM integrity.
Fig. S2. The CDK1-FRET biosensor distinguishes changes in CDK1 activity and is a surrogate for
cell cycle arrest.
Fig. S3. Priming with Fasudil disrupts ECM remodeling, inhibits ROCK signaling, and improves
Gem/Abraxane efficacy in vivo.
Fig. S4. Priming with Fasudil influences liver vasculature, cell attachment to CDMs, response to
chemotherapy, and remodeling of the ECM.
Fig. S5. Priming with Fasudil results in decreased SRC activity and defects in mitosis.
Fig. S6. High ECM TKCC5 patient model responds to priming strategies in a 3D patient-
personalized organotypic matrix.
Fig. S7. Low ECM TKCC2 patient model does not respond to priming strategies in a 3D patient-
personalized organotypic matrix.
Fig. S8. TKCC5 orthotopic tumors respond to priming, and SHG does not predict survival.
Fig. S9. Priming with Fasudil uncouples PC progression.
Table S1. List of P values.
Table S2. Details of antibodies used for the study.
Movie S1. 4D monitoring of fibroblast-ECM interactions upon treatment with vehicle and
Fasudil.
Movie S2. Live FLIM-FRET imaging of the CDK1 biosensor in KPC cells in response to Abraxane
and Abraxane + RO3306.
Movie S3. Live FLIM-FRET imaging of the CDK1 biosensor in KPC cells in interphase and
mitosis.
Movie S4. Live FLIM-FRET monitoring of CDK1 activity in KPC cells actively interacting with an
organotypic matrix.
Movie S5. Intravital FLIM-FRET imaging of subcutaneous xenografts with KPC-CDK1 cells and
imaging of fibrillar collagen.
Movie S6. Intravital monitoring of CDK1 accumulation in subcutaneous KPC tumors.
Movie S7. Intravital imaging of quantum dots circulating through tumor-associated
vasculature and diffusing into tumor tissue upon priming with Fasudil.
Movie S8. Imaging of liver tissue with metastatic KPC cells expressing the CDK1 biosensor
forming macrometastases and micrometastases.
Movie S9. Time-lapse tracking of collective cell streaming on CDMs unprimed or primed with
Fasudil.
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